USING MATLAB

Jake Blanchard
University of Wisconsin
Spring 2006

About Matlab

Origins are in linear algebra
Much functionality added later
Runs on all platforms
Many toolboxes exist

The User Interface

You can use Matlab interactively
Just type commands and view results
Difficulty is saving session

- I prefer to use scripts (m-files)
- I use the built-in editor

My Approach

Put commands into m-file
Run from main Matlab window
Edit m-file

- Rerun
- Repeat to perfection
- Save and turn in m-file

Variables

$$
\begin{aligned}
& A=5 \\
& B=3 \\
& C=A+B \\
& C=C+3
\end{aligned}
$$

Vectors and Matrices

Think of vectors as lists
Think of matrices as arrays (lists of lists)
$\mathrm{V}_{1}=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right.$ 4$]$
$\mathrm{V}_{2}=0: 4$
M1=[10 1; 010 ; 001 1]
M2=ones(3)

Accessing elements You can pick out individual components of vectors and matrices
V1(3)
M1 $(2,3)$

- M1 $(: 2)$
- M1(1,:)

Vector Math

Try this:
V=0:5
$\mathrm{Z}=\mathrm{V} * \mathrm{~V}$
To square each element:
$\mathrm{z}=\mathrm{V}$. * V
-Also ./ and .^

Plotting

Make vectors for x and y axis and then plot them
x=0:0.1:10
$y=\sin (x)$

- plot(x, y)
- plot($\left.x_{l} y_{l}, x_{l} y_{,}{ }^{\prime} o^{\prime}\right)$

Functions

exp, log, log10, sqrt
sin, cos, tan, asin, acos, atan
max, min, mean, median, sum, prod, sort

Flow Control

if $x<10$ then
$x=x+1$
else
$x=x^{\wedge} 2$
end

Flow Control (cont)

for $\mathrm{i}=1: 10$
$z=z * i$
end

User-Defined Functions

Suppose we want to plot:
$\sin \left(3^{*} x\right)+\sin \left(3.1^{*} x\right)$
Create user-defined function
function $r=f(x)$
$r=\sin (3 * x)+\sin (3.1 * x)$

- Save as f.m

User-Defined Functions (cont)

Now just call it:
$x=0: 0.1: 50 ;$

- $y=f(x)$;
- plot(x, y)

Conclusions

This should get you started with Matlab
Watch the demo movie to see it in action

