USING MATLAB

Jake Blanchard University of Wisconsin Spring 2006

About Matlab

Origins are in linear algebra
Much functionality added later
Runs on all platforms
Many toolboxes exist

The User Interface

You can use Matlab interactively
Just type commands and view results
Difficulty is saving session
I prefer to use scripts (m-files)
I use the built-in editor

My Approach Put commands into m-file Run from main Matlab window Edit m-file Rerun Repeat to perfection Save and turn in m-file

Variables

A=5
B=3
C=A+B
C=C+3

Vectors and Matrices Think of vectors as lists Think of matrices as arrays (lists of lists) • V1=[01234] ◆ V2=0:4 M1=[101;010;001] \bullet M2=ones(3)

Accessing elements
You can pick out individual components of vectors and matrices V1(3) • M1(2,3) M1(:,2) ♦ M1(1,:)

Vector Math Try this: ♦ V=0:5 ◆ Z=V*V To square each element: ◆ Z=V.*V Also ./ and .^

Plotting

- Make vectors for x and y axis and then plot them
- X=0:0.1:10
- y=sin(x)
- oplot(x,y)
- plot(x,y,x,y,'o')

Functions

exp, log, log1o, sqrt
sin, cos, tan, asin, acos, atan
max, min, mean, median, sum, prod, sort

Flow Control if x<10 then ♦ X=X+1 else ♦ X=X^2 end

Flow Control (cont)
for i=1:10
z=z*i
end

User-Defined Functions

 Suppose we want to plot: sin(3*x)+sin(3.1*x)
 Create user-defined function

function r=f(x)
r=sin(3*x)+sin(3.1*x)

Save as f.m

User-Defined Functions (cont)

Now just call it:

×=0:0.1:50;
y=f(x);
plot(x,y)

Conclusions

This should get you started with Matlab
Watch the demo movie to see it in action