Fast Fourier Transforms and
Signal Processing

Jake Blanchard
University of Wisconsin - Madison
Spring 2008

Introduction

* I’'m going to assume here that you know
what an FFT is and what you might use it
for.

* So my intent is to show you how to
implement FFTs in Matlab

* In practice, it is trivial to calculate an FFT
in Matlab, but takes a bit of practice to
use it appropriately

 This is the same in every tool I've ever
used

FFTs of Functions

* We can sample a function and then take
the FFT to see the function in the
frequency domain

» Of course, we must sample often enough
to avoid losing content

* The script on the following page samples
a sine wave

Sampling a sine wave

fo = 4; %frequency of the sine wave
Fs = 100; %sampling rate

Ts = |/Fs; %esampling time interval
t=0:Ts:|-Ts;

n = length(t); %°number of samples
y = 2*sin(2*pi*fo*t);

plot(t,y)

YfreqDomain = fft(y);

stem(abs(YfreqDomain));
axis([0,100,0,120])

www.blinkdagger.com

Output

120 F L L L L L L L L L

I
O
O

1

100

80

I
i

60

I
i

I
i

40

I
i

20

Correlating x-axis with frequencies

* The previous plot just uses the element
number as the row axis.

* In reality, each data point represents a
frequency.

* These frequencies are calculated from the
sampling rate

* The routine on the next page puts this
together.

> Send a dataset and sampling rate

A Useful Function

function [X,freq]=positiveFFT (x,Fs)
N=length(x);

k=0:N-1I;

T=N/Fs;

freq=k/T; 7%create the frequency range
X=fft(x)/N; % normalize the data
cutOff = ceil(N/2);

X = X(1:cutOff);

freq = freq(l:cutOff);

Key Calling Statements

-~ fo = 4; %frequency of the sine wave

Fs = 100; %ssampling rate

Ts = |/Fs; %esampling time interval
t=0:Ts:|-Ts;

n = length(t); %number of samples

y = 2*sin(2*pi*fo*t);

[YfreqD,freqRng] = positiveFFT(y,Fs);
stem(freqRng,abs(YfreqD));

New Plot

Using the positiveFFT function

1.5;

Amplitude

0.5

©0 0000606060066 0606O0
7 - 7

(0]
o0

8 10 12 14 16 _ 18 _ 20
Freq (Hz)

FFT of Imported Data

* We can read in sampled data and a
sample rate and then take an FFT

* The file touchtone.mat contains a
ringtone waveform for an | | digit phone
number (from Moler text)

* The commands to create a vector
appropriate for sampling are on the next
slide

Script for first number dialed

load touchtone

Fs=y.fs

n = length(y.sig); 7% number of samples
t = (0:n-1)ly.fs; % Time for entire signal
y = double(y.sig)/128;

t=t(1:8000) % take first 8,000 samples
y=y(1:8000)

plot(t,y)

Time Signal

0.8

0.6

0.4

0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Output Spectrum

Using the positiveFFT function

L

L

L

0.07 ¢

0.06

0.05

0.04

Amplitude

0.02

0.01

1000 1500

500

2000 2500
Freq (Hz)

3000

3500

4000

4500

What number was dialed?

e To figure out which number was dialed,
look at this grid

ABC W DEF

97 1 :! E;

Ml prs W Tuv W wxy
7 8 9

941 —X— HIBER #

1209 1336 1477

What is second number?

 Take the next set of data and figure out
which number was dialed.

 Try points from 8,000 to 15,000

1

0.8

0.6

0.4

0.2~

0

-0.2—

-0.4 -

-0.6

-0.8

-1

r [[[r r [[r [
0 1 2 3 4 5 6 7 8 9 10

Zero Padding (blinkdagger.com)

e FFTs work with vectors containing a
number of elements which is an even
power of 2

e If you have data which is not a power of 2,
you can fill with Q’s

 This will get you faster performance and
better resolution

Example

 Beats: y=sin(2nf t)+sin(2nf,t)

* Let f,=4Hz and f,=4.5Hz

* Sample at 100 Hz

» Take FFT with and without padding

Not Padded

Amplitude

50

45

40

35

30

25

20

15

10

]

]

]

]

]

r

4 5
Freq (Hz)

Zero-Padded

FFT of Sample Signal: Zero Padding up to N = 1024

L L L L L L L L L

55

]

]

50

45

]

]

40

]

35

30 -

Magnitude

20 -

15+~

1 2 3 4 5 6 7 8 9
Freq (Hz)

Script

- zeroPadFac= nextpow2(length(y)) + 3;

' [a,b] = posFFTzeropad(y,Fs,2*zeroPadFac);
%0

function [X,freq]=posFFTzeropad(x,Fs,N)
k=0:N-1I;

T=N/Fs;

freq=k/T;

X=fft(x,N)/length(x);

cutOff = ceil(N/2);

X = X(1:cutOff);

freq = freq(l:cutOff);

Convolution

e Once we can do FFTs, we can do
convolution

e Matlab has several built-in
functions for this

* To convolve 2 vectors, it is just:
w = conv(u,v)

The Convolution Algorithm

xtrans = fft([x zeros(l,length(y)-1)])
ytrans = fft([y zeros(l,length(x)-1)])
conv(x,y) = ifft(xtrans.*ytrans)

2-D Convolution

A = rand(3);
B = rand(4);
C = conv2(A,B)

Example — edge-finding

s=[121;000;-1-2-1];
A = zeros(30);
A(10:20,10:20) = ones(I1 1);
mesh(A)

H = conv2(A,s);

figure

mesh(H)

V = conv2(A;s’);

figure

mesh(V)

Digital Filters

e Matlab has several filters built in
e One is the filtfilt command

What is filtfilt?

 This is a zero-phase, forward and reverse
digital filter

o y=filtfilt(b, a, x)
e b and a define filter; x is the data to be
filtered

* The length of x must be at least 3 times
the order of the filter (max of length(a)
or length(b) minus 1)

filtfilt algorithm

* The filtfilt algorithm is based on a
difference equation

* Providing vectors a and b, determine the
outcome of the filter

* The difference equation is:

* y(n) = b(1)*x(n) + b(2)*x(n-1) + ...+
b(nb+1)*x(n-nb) - a(2)*y(n-1) - ... -
a(na+1)*y(n-na)

* b operates on the input vector (x) and a
operates on the output vector (y)

Butterworth Filters

» Matlab has tools to prepare these vectors
defining digital filters

* One example is the Butterworth filter

* [B,A] = butter (N,Wn, high") designs
a highpass filter.

* N is order of filter

* Whn is normalized cutoff frequency

e B and A are sent to the filtfilt command
to actually filter data

Butterworth Filters (cont.)

* [B,A] = butter (N,Wn,'low") designs a
lowpass filter.

e [B,A] = butter(N,Wn,'stop’) is a
bandstop filter if Wn = [W] W2].

* Note: cutoff frequency is frequency where
magnitude of response is |/sqrt(2)

e Hence,WVn is between 0 and |, where | is
the Nyquist frequency

Example

e Matlab has a built-in chirp signal

e £=0:0.001:2

e y=chirp(t,0,1,150)

e This samples a chirp for 2 seconds at | kHz —The

frequency of the signal increases with time,
starting at 0 and crossing 150 Hz at | second

e sound(y) will play the sound through your sound
card

e spectrogram(y,256,250,256,1E3,'yaxis") will
show time dependence of frequency
* Nyquist Frequency is f/2 or 500 Hz

e To set cutoff at 150 Hz, set Wn=150/500=0.3

Spectrogram

450 | | Hw. ‘ ‘ L

400

350

300 |

250

Frequency (Hz)

200

150

100

50

|

1

|

|

|
02 04 06 08 1 12 14 16 18

Example - continued

* Plot FFT of chirp
e [YfreqD,freqRng] = positiveFFT(y,1000);
o stem(freqRng,abs(YfreqD));

003 F L L L L L L L T U

0

0.02¢

0.01

0.005

Example - continued

* Now use (lowpass) filter (10 order
Butterworth, cutoff at 150 Hz)

e [b,a]=butter(10,0.3,low’)

o yfilt=filtfilt(b,a,y)

e [YfreqD,freqRng] = positiveFFT(yfilt,1000);

o stem(freqRng,abs(YfreqD));

The script

Fs=1000;
t=0:1/Fs:2
y=chirp(t,0,1,150)
spectrogram(y,256,250,256,1 E3, 'yaxis’)
[YfregD,freqRng] = positiveFFT(y,Fs);
stem(freqRng,abs(YfregD));
[b,a]=butter(10,0.3,'low’);
yfilt=filtfilt(b,a,y);
[YfreqD,freqRng] =

positiveFFT (yfilt,1000);
stem(freqRng,abs(YfregD));

Practice

 Compare to a high pass filter with the same
cutoff (150 Hz)

e Reminder: code for low pass filter is:

e t=0:0.001:2

e y=chirp(t,0,1,150)

e [b,a]=butter(10,0.3’low’)

o yfilt=filtfilt(b,a,y)

o [YfreqD,freqRng] = positiveFFT(yfilt,1000);
o stem(freqRng,abs(YfreqD));

e This is in fftscripts.m

e You’ll need positiveFFT.m

Filter Response

* To see a filter response, use the freqz or
fvtool from the Signal Processing Toolkit

* From previous example:
freqz(b,a,128,Fs) or fvtool(b,a)
 This will readily show you impulse

response, step response, pole/zero plots,
etc.

Do you have the SP Toolbox!?

e Type ver to check

* Type help to locate help specific to Signal
Processing Toolbox

freqz

200 ¢
)
S 0
S I e S
2 -200
=
-400 ¢ ; : : : : - : - : .
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)
0;
0
]
o
ol
S -500
(]
3 T
o T
-1000" - : : - : - : - : .
0 50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

il

Hel

n Filter Visualization Tool - Figure 1: Magnitude Response (dB)

x
K
2

(]
o
m
=
B

P

Window

Desktop

bug

Insert Wiew Debu

ysis

DE&E|IKOTNNNE 2290XK|H

Edit Anal
bbb # & [T~ BB k] @

File

Magnitude Response (dB)

P P

g N [¥ A Y

-
'
'
1
'
'
'
'
'
'
'
'
[N P
I
'
'
'
'
'
'
'
1
'
'
'
i

i Sty Rttt Bl il sl Stk nltilie ittt
'
'
1
'
'
'
'
'
'
'

'
| N . S
]

'

'

'

'

'

'

'

1
'

'

]

e L e e e el ol

.
Fmmm o

)|

B 1111 S
200 (- ------

(8R) apnyube iy

11) R

0.3 0.4 0.6 0.7 0.8 0.5
MNoermalized Fregquency (x=x rad/sample}

0.z

0.1

fvtool — magnitude and phase

Magnitude (dB)

-50

-100

-150

-200

-250

Magnitude (dB) and Phase Responses

r

L ¥ L

r r r

r

]

r-0.0083

]

r-3.0576

]

r-6.1069

]

r-9.1561

]

r-12.2054

]

r-15.2547

0.1

0.2

0.3

0.4 0.5 0.6
Normalized Frequency (xn rad/sample)

0.7

0.8

0.9

Phase (radians)

fvtool — impulse response

fvtool — step response

Step Response

1.2~ ®

(_ J
0.8 -
®

(]
ke
E
£ 06
£
Z

04- @

LAl

0 10 20 30 40 50
Samples

fvtool — pole/zero plot

Pole/Zero Plot

0.8 |-

0.6 |~

0.2~ / X

Imaginary Part
o
X

-0.2 - { X

-0.6 I~

-0.8 |~

-1.5 -1 -0.5 0 0.5
Real Part

Signal Processing Toolbox

* FIR filter design
e Digital filter design
e Characterization/Analysis

* Implementation (convolution, etc.)

* Analog filters

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

=[5

DeE&E K |eafhe|E 08 8O0

* Waveform generators

Welch Mean -Square Spectrum Estimate

» Some GUI tools Sl
\.

Fundamentals

* Represent signals as vectors

e Stepisall Is

e Impulse is a | followed by all Os
 Several GUI tools are available:

° sptool
o fytool
> fdatool

u Filter Design & Analysis Tool - [untitled.fda *]

Eile

Edit Analysis

DNedEh 220X TN LEHNEE: I BLl

Targets

— Current Fitter Infarmation

View Window Help

_ Magnitude Response (dB)

k?

g

I I I I I I I I I
0 . . =TT R R Coes o R ARRRRR
Structure: Direct-Form I, . :_ :_ :_ ._ :_
Second-Order Section: . | ey cooT cooTT cooTne CTTTTERL T coTTT cotT coTT CTTTTT
I:ﬂ 1 1 1 1 1 1 1 1 1
T o o o o R o o]
Order: 10 = 100 " " s s " I ' I I
A k= : : : : : : : : :
Sectionz: 5 2 spb------ SR SR SR beeee- SR R . [SRR
Stable: Yes % : : : : : : : : :
Sourcer Designed = 200 p------ pooes pooes P DRREh pooes oo oo RN T
T S s S S N
| | | | | | | | |
[Stare Fitter 0 =0 100 150 200 250 300 350 400 450
Frequency (Hz)
[Fitter Manager ...
_Rezponze Type __Filter Order __Freguency Specifications _ Magnitude Specifications
@ Lowpass - Units: |Hz -
1 Highpass
Minimum order Fs: 1000 The attenustion &t cutoff
1 Bandpass i
Bandstop Options Fo 150 frequencies iz fixed at 3 dB
Differentiator - [half the passhand povwer)
. : Thete are no aptional
eI) parameters for thiz design
IR | Butterwarth method.
@) FIR | Equiripple
[o start:
Design Filter .

Designing Filter ... Done

. fdatool

Waveform Generators

e sawtooth - periodic sawtooth wave

e square — periodic square wave

e tripuls — single triangular pulse

e rectpuls - single rectangular pulse

e gauspuls — Gaussian-modulated sinusoidal pulse
* sinc — sin(x)/x

e chirp — linear, quadratic (convex or concave)

» vco — voltage controlled oscillator

e pulstran — pulse train (builds up train of any of the
pulses above)

e For example: pulstran(t,d,@rectpuls,w) — d=delay
times, w=pulse widths

Using VWaveforms

e Sawtooth creates sawtooth wave with a
width of 2*pi

e t=0:0.001:100;
e y=sawtooth(t); .

* plot(t,y) N

Spectral Analysis

e psd — power spectral density

° msspectrum — mean square
e pseudospectrum

Create Spectral Analysis Object

 h=spectrum.welch

* Options include:
° burg
° cov-covariance
> mcov-modified covariance
° periodogram
> welch
° yulear —Yule-Walker autoregressive

e mypower=msspectrum(h,y,’ Fs’;Fs)
e plot(mypower)

The Script

-~ h=spectrum.welch
mypower=msspectrum(h,y, Fs',Fs)
plot(mypower)
mypowerfilt=msspectrum(h,yfilt,' Fs',Fs)
hold on

plot(mypowerfilt)

Result

Welch Mean-Square Spectrum Estimate

Magnitude (dB)
N
o

0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Image Processing and cosine
transforms

* You need the image processing toolbox
* I'll say a bit more about this toolbox later

e For now, let’s look at the cosine
transform

* This tool represents an image as a sum of
sinusoids

* Much of the content of a figure is
contained in just a small number of these
sinusoids

* Hence, it is useful for image compression

Approach

* Read in image

* Take Discrete Cosine Transform
 Toss out higher order terms

» Compare result to original picture

e The built-in function dct2 uses an FFI-
like algorithm to compute transform

Script

RGB = imread('shuttle.jpg');
| = rgb2gray(RGB);
figure, imshow(l)

J = dct2(l);

J(abs()) < 10) = |l e-8;

K =idct2());

figure, imshow(K;[0 255])
J = dct2(l);

J(abs(]) < 40) = | e-8;

K =idct2());

figure, imshow(K;[0 255])

Statistics

e Transform matrix (J) originally has
288,960 elements (480x602)

e |81,697 have abs less than |0
e 274,221 have abs less than 40

g

First Compression (abs(]))<10)

Dryden Flight Research Center EC88-0247-1 Photographed 1988
@ Shuttle Atlantis Landing

Dryden Flight Research Center EC88-0247-1 Photographed 1988
@ Shuttle Atlantis Landing B

First Compression (abs(])<40)

Dryden Flight Research Center EC88-0247-1 Photographed 1988
@ Shuttle Atlantis Landing

’ Dryden Flight Ressarch Canter ECER-GZ471 Photographed 1988 !
Shuttin Stiants Landing

Questions?

