
Fast Fourier Transforms and

Signal Processing

Jake Blanchard

University of Wisconsin - Madison

Spring 2008

Introduction

 I’m going to assume here that you know
what an FFT is and what you might use it
for.

 So my intent is to show you how to
implement FFTs in Matlab

 In practice, it is trivial to calculate an FFT
in Matlab, but takes a bit of practice to
use it appropriately

 This is the same in every tool I’ve ever
used

FFTs of Functions

 We can sample a function and then take

the FFT to see the function in the

frequency domain

 Of course, we must sample often enough

to avoid losing content

 The script on the following page samples

a sine wave

Sampling a sine wave

fo = 4; %frequency of the sine wave

Fs = 100; %sampling rate

Ts = 1/Fs; %sampling time interval

t = 0:Ts:1-Ts;

n = length(t); %number of samples

y = 2*sin(2*pi*fo*t);

plot(t,y)

YfreqDomain = fft(y);

stem(abs(YfreqDomain));

axis([0,100,0,120])

www.blinkdagger.com

Output

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Correlating x-axis with frequencies

 The previous plot just uses the element

number as the row axis.

 In reality, each data point represents a

frequency.

 These frequencies are calculated from the

sampling rate

 The routine on the next page puts this

together.

◦ Send a dataset and sampling rate

A Useful Function

function [X,freq]=positiveFFT(x,Fs)

N=length(x);

k=0:N-1;

T=N/Fs;

freq=k/T; %create the frequency range

X=fft(x)/N; % normalize the data

cutOff = ceil(N/2);

X = X(1:cutOff);

freq = freq(1:cutOff);

Key Calling Statements

fo = 4; %frequency of the sine wave

Fs = 100; %sampling rate

Ts = 1/Fs; %sampling time interval

t = 0:Ts:1-Ts;

n = length(t); %number of samples

y = 2*sin(2*pi*fo*t);

[YfreqD,freqRng] = positiveFFT(y,Fs);

stem(freqRng,abs(YfreqD));

New Plot

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Freq (Hz)

A
m

p
lit

u
d
e

Using the positiveFFT function

FFT of Imported Data

 We can read in sampled data and a

sample rate and then take an FFT

 The file touchtone.mat contains a

ringtone waveform for an 11 digit phone

number (from Moler text)

 The commands to create a vector

appropriate for sampling are on the next

slide

Script for first number dialed

load touchtone

Fs=y.fs

n = length(y.sig); % number of samples

t = (0:n-1)/y.fs; % Time for entire signal

y = double(y.sig)/128;

t=t(1:8000) % take first 8,000 samples

y=y(1:8000)

plot(t,y)

Time Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Output Spectrum

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Freq (Hz)

A
m

p
lit

u
d
e

Using the positiveFFT function

What number was dialed?

 To figure out which number was dialed,

look at this grid

What is second number?

 Take the next set of data and figure out

which number was dialed.

 Try points from 8,000 to 15,000

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Zero Padding (blinkdagger.com)

 FFTs work with vectors containing a

number of elements which is an even

power of 2

 If you have data which is not a power of 2,

you can fill with 0’s

 This will get you faster performance and

better resolution

Example

 Beats: y=sin(2f1t)+sin(2f2t)

 Let f1=4Hz and f2=4.5Hz

 Sample at 100 Hz

 Take FFT with and without padding

Not Padded

0 1 2 3 4 5 6 7 8 9

5

10

15

20

25

30

35

40

45

50

Freq (Hz)

A
m

p
lit

u
d
e

Zero-Padded

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

45

50

55

FFT of Sample Signal: Zero Padding up to N = 1024

Freq (Hz)

M
a
g
n
it
u
d
e

Script

zeroPadFac= nextpow2(length(y)) + 3;

[a,b] = posFFTzeropad(y,Fs,2^zeroPadFac);

%

function [X,freq]=posFFTzeropad(x,Fs,N)

k=0:N-1;

T=N/Fs;

freq=k/T;

X=fft(x,N)/length(x);

cutOff = ceil(N/2);

X = X(1:cutOff);

freq = freq(1:cutOff);

Convolution

 Once we can do FFTs, we can do

convolution

 Matlab has several built-in

functions for this

 To convolve 2 vectors, it is just:

w = conv(u,v)

The Convolution Algorithm

xtrans = fft([x zeros(1,length(y)-1)])

ytrans = fft([y zeros(1,length(x)-1)])

conv(x,y) = ifft(xtrans.*ytrans)

2-D Convolution

A = rand(3);

B = rand(4);

C = conv2(A,B)

Example – edge-finding

s = [1 2 1; 0 0 0; -1 -2 -1];

A = zeros(30);

A(10:20,10:20) = ones(11);

mesh(A)

H = conv2(A,s);

figure

mesh(H)

V = conv2(A,s');

figure

mesh(V)

Results

0

10

20

30

0

10

20

30
0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

0

10

20

30

40
-4

-2

0

2

4

0

10

20

30

40

0

10

20

30

40
-4

-2

0

2

4

Digital Filters

 Matlab has several filters built in

 One is the filtfilt command

What is filtfilt?

 This is a zero-phase, forward and reverse

digital filter

 y=filtfilt(b, a, x)

 b and a define filter; x is the data to be

filtered

 The length of x must be at least 3 times

the order of the filter (max of length(a)

or length(b) minus 1)

filtfilt algorithm

 The filtfilt algorithm is based on a
difference equation

 Providing vectors a and b, determine the
outcome of the filter

 The difference equation is:

 y(n) = b(1)*x(n) + b(2)*x(n-1) + ... +
b(nb+1)*x(n-nb) - a(2)*y(n-1) - ... -
a(na+1)*y(n-na)

 b operates on the input vector (x) and a
operates on the output vector (y)

Butterworth Filters

 Matlab has tools to prepare these vectors

defining digital filters

 One example is the Butterworth filter

 [B,A] = butter (N,Wn,'high') designs

a highpass filter.

 N is order of filter

 Wn is normalized cutoff frequency

 B and A are sent to the filtfilt command

to actually filter data

Butterworth Filters (cont.)

 [B,A] = butter (N,Wn,'low') designs a

lowpass filter.

 [B,A] = butter(N,Wn,'stop') is a

bandstop filter if Wn = [W1 W2].

 Note: cutoff frequency is frequency where

magnitude of response is 1/sqrt(2)

 Hence, Wn is between 0 and 1, where 1 is

the Nyquist frequency

Example

 Matlab has a built-in chirp signal

 t=0:0.001:2

 y=chirp(t,0,1,150)

 This samples a chirp for 2 seconds at 1 kHz – The
frequency of the signal increases with time,
starting at 0 and crossing 150 Hz at 1 second

 sound(y) will play the sound through your sound
card

 spectrogram(y,256,250,256,1E3,'yaxis') will
show time dependence of frequency

 Nyquist Frequency is f/2 or 500 Hz

 To set cutoff at 150 Hz, set Wn=150/500=0.3

Spectrogram

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

200

250

300

350

400

450

500

Time

F
re

q
u
e
n
c
y
 (

H
z
)

Example - continued

 Plot FFT of chirp

 [YfreqD,freqRng] = positiveFFT(y,1000);

 stem(freqRng,abs(YfreqD));

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

Example - continued

 Now use (lowpass) filter (10th order

Butterworth, cutoff at 150 Hz)

 [b,a]=butter(10,0.3,’low’)

 yfilt=filtfilt(b,a,y)

 [YfreqD,freqRng] = positiveFFT(yfilt,1000);

 stem(freqRng,abs(YfreqD));

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

The script

Fs=1000;

t=0:1/Fs:2

y=chirp(t,0,1,150)

spectrogram(y,256,250,256,1E3,'yaxis')

[YfreqD,freqRng] = positiveFFT(y,Fs);

stem(freqRng,abs(YfreqD));

[b,a]=butter(10,0.3,'low');

yfilt=filtfilt(b,a,y);

[YfreqD,freqRng] =
positiveFFT(yfilt,1000);

stem(freqRng,abs(YfreqD));

Practice

 Compare to a high pass filter with the same
cutoff (150 Hz)

 Reminder: code for low pass filter is:

 t=0:0.001:2

 y=chirp(t,0,1,150)

 [b,a]=butter(10,0.3,’low’)

 yfilt=filtfilt(b,a,y)

 [YfreqD,freqRng] = positiveFFT(yfilt,1000);

 stem(freqRng,abs(YfreqD));

 This is in fftscripts.m

 You’ll need positiveFFT.m

Filter Response

 To see a filter response, use the freqz or

fvtool from the Signal Processing Toolkit

 From previous example:

freqz(b,a,128,Fs) or fvtool(b,a)

 This will readily show you impulse

response, step response, pole/zero plots,

etc.

Do you have the SP Toolbox?

 Type ver to check

 Type help to locate help specific to Signal

Processing Toolbox

freqz

0 50 100 150 200 250 300 350 400 450 500
-1000

-500

0

Frequency (Hz)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 50 100 150 200 250 300 350 400 450 500
-400

-200

0

200

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

fvtool

fvtool – magnitude and phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-250

-200

-150

-100

-50

0

Normalized Frequency ( rad/sample)

M
a
g
n
itu

d
e
 (

d
B

)

Magnitude (dB) and Phase Responses

-15.2547

-12.2054

-9.1561

-6.1069

-3.0576

-0.0083

P
h
a
s
e
 (

ra
d
ia

n
s
)

fvtool – impulse response

0 10 20 30 40 50 60 70

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Samples

A
m

p
lit

u
d
e

Impulse Response

fvtool – step response

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

Samples

A
m

p
lit

u
d
e

Step Response

fvtool – pole/zero plot

-1.5 -1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
a
g
in

a
ry

 P
a
rt

Pole/Zero Plot

Signal Processing Toolbox

 FIR filter design

 Digital filter design

 Characterization/Analysis

 Implementation (convolution, etc.)

 Analog filters

 Waveform generators

 Some GUI tools

Fundamentals

 Represent signals as vectors

 Step is all 1s

 Impulse is a 1 followed by all 0s

 Several GUI tools are available:

◦ sptool

◦ fvtool

◦ fdatool

To start:
fdatool

Waveform Generators

 sawtooth - periodic sawtooth wave

 square – periodic square wave

 tripuls – single triangular pulse

 rectpuls - single rectangular pulse

 gauspuls – Gaussian-modulated sinusoidal pulse

 sinc – sin(x)/x

 chirp – linear, quadratic (convex or concave)

 vco – voltage controlled oscillator

 pulstran – pulse train (builds up train of any of the

pulses above)

 For example: pulstran(t,d,@rectpuls,w) – d=delay

times, w=pulse widths

Using Waveforms

 Sawtooth creates sawtooth wave with a

width of 2*pi

 t=0:0.001:100;

 y=sawtooth(t);

 plot(t,y)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Spectral Analysis

 psd – power spectral density

 msspectrum – mean square

 pseudospectrum

Create Spectral Analysis Object

 h=spectrum.welch

 Options include:

◦ burg

◦ cov-covariance

◦ mcov-modified covariance

◦ periodogram

◦ welch

◦ yulear –Yule-Walker autoregressive

 mypower=msspectrum(h,y,’Fs’,Fs)

 plot(mypower)

The Script

h=spectrum.welch

mypower=msspectrum(h,y,'Fs',Fs)

plot(mypower)

mypowerfilt=msspectrum(h,yfilt,'Fs',Fs)

hold on

plot(mypowerfilt)

Result

0 50 100 150 200 250 300 350 400 450 500
-70

-60

-50

-40

-30

-20

-10

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

Welch Mean-Square Spectrum Estimate

Image Processing and cosine

transforms

 You need the image processing toolbox

 I’ll say a bit more about this toolbox later

 For now, let’s look at the cosine
transform

 This tool represents an image as a sum of
sinusoids

 Much of the content of a figure is
contained in just a small number of these
sinusoids

 Hence, it is useful for image compression

Approach

 Read in image

 Take Discrete Cosine Transform

 Toss out higher order terms

 Compare result to original picture

 The built-in function dct2 uses an FFT-

like algorithm to compute transform

Script

RGB = imread('shuttle.jpg');

I = rgb2gray(RGB);

figure, imshow(I)

J = dct2(I);

J(abs(J) < 10) = 1e-8;

K = idct2(J);

figure, imshow(K,[0 255])

J = dct2(I);

J(abs(J) < 40) = 1e-8;

K = idct2(J);

figure, imshow(K,[0 255])

Statistics

 Transform matrix (J) originally has

288,960 elements (480x602)

 181,697 have abs less than 10

 274,221 have abs less than 40

First Compression (abs(J)<10)

First Compression (abs(J)<40)

Questions?

