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Introduction

 I’m going to assume here that you know 
what an FFT is and what you might use it 
for.

 So my intent is to show you how to 
implement FFTs in Matlab

 In practice, it is trivial to calculate an FFT 
in Matlab, but takes a bit of practice to 
use it appropriately

 This is the same in every tool I’ve ever 
used



FFTs of Functions

 We can sample a function and then take 

the FFT to see the function in the 

frequency domain

 Of course, we must sample often enough 

to avoid losing content

 The script on the following page samples 

a sine wave



Sampling a sine wave

fo = 4; %frequency of the sine wave 

Fs = 100; %sampling rate 

Ts = 1/Fs; %sampling time interval 

t = 0:Ts:1-Ts; 

n = length(t); %number of samples 

y = 2*sin(2*pi*fo*t); 

plot(t,y) 

YfreqDomain = fft(y);

stem(abs(YfreqDomain)); 

axis([0,100,0,120])
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Correlating x-axis with frequencies

 The previous plot just uses the element 

number as the row axis.

 In reality, each data point represents a 

frequency.

 These frequencies are calculated from the 

sampling rate

 The routine on the next page puts this 

together. 

◦ Send a dataset and sampling rate



A Useful Function

function [X,freq]=positiveFFT(x,Fs) 

N=length(x); 

k=0:N-1; 

T=N/Fs; 

freq=k/T; %create the frequency range 

X=fft(x)/N; % normalize the data

cutOff = ceil(N/2); 

X = X(1:cutOff); 

freq = freq(1:cutOff);



Key Calling Statements

fo = 4; %frequency of the sine wave 

Fs = 100; %sampling rate 

Ts = 1/Fs; %sampling time interval 

t = 0:Ts:1-Ts; 

n = length(t); %number of samples 

y = 2*sin(2*pi*fo*t); 

[YfreqD,freqRng] = positiveFFT(y,Fs);

stem(freqRng,abs(YfreqD));



New Plot
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FFT of Imported Data

 We can read in sampled data and a 

sample rate and then take an FFT

 The file touchtone.mat contains a 

ringtone waveform for an 11 digit phone 

number (from Moler text)

 The commands to create a vector 

appropriate for sampling are on the next 

slide



Script for first number dialed

load touchtone

Fs=y.fs

n = length(y.sig);     % number of samples

t = (0:n-1)/y.fs;   % Time for entire signal

y = double(y.sig)/128;

t=t(1:8000) % take first 8,000 samples

y=y(1:8000)

plot(t,y)



Time Signal
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Output Spectrum
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What number was dialed?

 To figure out which number was dialed, 

look at this grid



What is second number?

 Take the next set of data and figure out 

which number was dialed.

 Try points from 8,000 to 15,000
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Zero Padding (blinkdagger.com)

 FFTs work with vectors containing a 

number of elements which is an even 

power of 2

 If you have data which is not a power of 2, 

you can fill with 0’s

 This will get you faster performance and 

better resolution



Example

 Beats: y=sin(2f1t)+sin(2f2t)

 Let f1=4Hz and f2=4.5Hz

 Sample at 100 Hz

 Take FFT with and without padding



Not Padded
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Zero-Padded
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Script

zeroPadFac= nextpow2(length(y)) + 3;

[a,b] = posFFTzeropad(y,Fs,2^zeroPadFac);

%

function [X,freq]=posFFTzeropad(x,Fs,N)

k=0:N-1;

T=N/Fs;      

freq=k/T;    

X=fft(x,N)/length(x); 

cutOff = ceil(N/2); 

X = X(1:cutOff);

freq = freq(1:cutOff);



Convolution

 Once we can do FFTs, we can do 

convolution

 Matlab has several built-in 

functions for this

 To convolve 2 vectors, it is just: 

w = conv(u,v)



The Convolution Algorithm

xtrans = fft([x zeros(1,length(y)-1)])

ytrans = fft([y zeros(1,length(x)-1)])

conv(x,y) = ifft(xtrans.*ytrans)



2-D Convolution

A = rand(3); 

B = rand(4); 

C = conv2(A,B)



Example – edge-finding

s = [1 2 1; 0 0 0; -1 -2 -1];

A = zeros(30);

A(10:20,10:20) = ones(11);

mesh(A)

H = conv2(A,s);

figure

mesh(H)

V = conv2(A,s');

figure

mesh(V)



Results
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Digital Filters

 Matlab has several filters built in

 One is the filtfilt command



What is filtfilt?

 This is a zero-phase, forward and reverse 

digital filter

 y=filtfilt(b, a, x)

 b and a define filter; x is the data to be 

filtered

 The length of x must be at least 3 times 

the order of the filter (max of length(a) 

or length(b) minus 1)



filtfilt algorithm

 The filtfilt algorithm is based on a 
difference equation

 Providing vectors a and b, determine the 
outcome of the filter

 The difference equation is:

 y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + 
b(nb+1)*x(n-nb) - a(2)*y(n-1) - ... -
a(na+1)*y(n-na)

 b operates on the input vector (x) and a 
operates on the output vector (y)



Butterworth Filters

 Matlab has tools to prepare these vectors 

defining digital filters

 One example is the Butterworth filter

 [B,A] = butter (N,Wn,'high') designs 

a highpass filter.

 N is order of filter

 Wn is normalized cutoff frequency

 B and A are sent to the filtfilt command 

to actually filter data



Butterworth Filters (cont.)

 [B,A] = butter (N,Wn,'low') designs a 

lowpass filter.

 [B,A] = butter(N,Wn,'stop') is a 

bandstop filter if Wn = [W1 W2].

 Note: cutoff frequency is frequency where 

magnitude of response is 1/sqrt(2)

 Hence, Wn is between 0 and 1, where 1 is 

the Nyquist frequency



Example

 Matlab has a built-in chirp signal

 t=0:0.001:2

 y=chirp(t,0,1,150)

 This samples a chirp for 2 seconds at 1 kHz – The 
frequency of the signal increases with time, 
starting at 0 and crossing 150 Hz at 1 second

 sound(y) will play the sound through your sound 
card

 spectrogram(y,256,250,256,1E3,'yaxis') will 
show time dependence of frequency

 Nyquist Frequency is f/2 or 500 Hz

 To set cutoff at 150 Hz, set Wn=150/500=0.3



Spectrogram
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Example - continued

 Plot FFT of chirp

 [YfreqD,freqRng] = positiveFFT(y,1000);

 stem(freqRng,abs(YfreqD));
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Example - continued

 Now use (lowpass) filter (10th order 

Butterworth, cutoff at 150 Hz)

 [b,a]=butter(10,0.3,’low’)

 yfilt=filtfilt(b,a,y)

 [YfreqD,freqRng] = positiveFFT(yfilt,1000);

 stem(freqRng,abs(YfreqD));
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The script

Fs=1000;

t=0:1/Fs:2

y=chirp(t,0,1,150)

spectrogram(y,256,250,256,1E3,'yaxis')

[YfreqD,freqRng] = positiveFFT(y,Fs);

stem(freqRng,abs(YfreqD));

[b,a]=butter(10,0.3,'low');

yfilt=filtfilt(b,a,y);

[YfreqD,freqRng] = 
positiveFFT(yfilt,1000);

stem(freqRng,abs(YfreqD));



Practice

 Compare to a high pass filter with the same 
cutoff (150 Hz)

 Reminder: code for low pass filter is:

 t=0:0.001:2

 y=chirp(t,0,1,150)

 [b,a]=butter(10,0.3,’low’)

 yfilt=filtfilt(b,a,y)

 [YfreqD,freqRng] = positiveFFT(yfilt,1000);

 stem(freqRng,abs(YfreqD));

 This is in fftscripts.m

 You’ll need positiveFFT.m



Filter Response

 To see a filter response, use the freqz or 

fvtool from the Signal Processing Toolkit

 From previous example: 

freqz(b,a,128,Fs) or fvtool(b,a)

 This will readily show you impulse 

response, step response, pole/zero plots, 

etc.



Do you have the SP Toolbox?

 Type ver to check

 Type help to locate help specific to Signal 

Processing Toolbox



freqz
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fvtool



fvtool – magnitude and phase
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fvtool – impulse response
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fvtool – step response
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fvtool – pole/zero plot
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Signal Processing Toolbox

 FIR filter design

 Digital filter design 

 Characterization/Analysis

 Implementation (convolution, etc.)

 Analog filters

 Waveform generators

 Some GUI tools



Fundamentals

 Represent signals as vectors

 Step is all 1s

 Impulse is a 1 followed by all 0s

 Several GUI tools are available:

◦ sptool

◦ fvtool

◦ fdatool



To start:
fdatool



Waveform Generators

 sawtooth - periodic sawtooth wave

 square – periodic square wave

 tripuls – single triangular pulse

 rectpuls - single rectangular pulse

 gauspuls – Gaussian-modulated sinusoidal pulse

 sinc – sin(x)/x

 chirp – linear, quadratic (convex or concave)

 vco – voltage controlled oscillator 

 pulstran – pulse train (builds up train of any of the 

pulses above)

 For example: pulstran(t,d,@rectpuls,w) – d=delay 

times, w=pulse widths



Using Waveforms

 Sawtooth creates sawtooth wave with a 

width of 2*pi

 t=0:0.001:100;

 y=sawtooth(t);

 plot(t,y)
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Spectral Analysis

 psd – power spectral density

 msspectrum – mean square

 pseudospectrum



Create Spectral Analysis Object

 h=spectrum.welch

 Options include:

◦ burg

◦ cov-covariance

◦ mcov-modified covariance

◦ periodogram

◦ welch

◦ yulear –Yule-Walker autoregressive

 mypower=msspectrum(h,y,’Fs’,Fs)

 plot(mypower)



The Script

h=spectrum.welch

mypower=msspectrum(h,y,'Fs',Fs)

plot(mypower)

mypowerfilt=msspectrum(h,yfilt,'Fs',Fs)

hold on

plot(mypowerfilt)



Result
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Image Processing and cosine 

transforms

 You need the image processing toolbox

 I’ll say a bit more about this toolbox later

 For now, let’s look at the cosine 
transform

 This tool represents an image as a sum of 
sinusoids

 Much of the content of a figure is 
contained in just a small number of these 
sinusoids

 Hence, it is useful for image compression



Approach

 Read in image

 Take Discrete Cosine Transform

 Toss out higher order terms

 Compare result to original picture

 The built-in function dct2 uses an FFT-

like algorithm to compute transform



Script

RGB = imread('shuttle.jpg');

I = rgb2gray(RGB);

figure, imshow(I)

J = dct2(I);

J(abs(J) < 10) = 1e-8;

K = idct2(J);

figure, imshow(K,[0 255])

J = dct2(I);

J(abs(J) < 40) = 1e-8;

K = idct2(J);

figure, imshow(K,[0 255])



Statistics

 Transform matrix (J) originally has 

288,960 elements (480x602)

 181,697 have abs less than 10

 274,221 have abs less than 40



First Compression (abs(J)<10)



First Compression (abs(J)<40)



Questions?


